Custom Search


Wednesday 01 March 2000

The contribution of hepatic inactivation of testosterone to the lowering of serum testosterone levels by ketoconazole.

By: Wilson VS, LeBlanc GA.

Toxicol Sci 2000 Mar;54(1):128-37

Hepatic biotransformation processes can be modulated by chemical exposure and these alterations can impact the biotransformation of endogenous substrates. Furthermore, chemically mediated alterations in the biotransformation of endogenous steroid hormones have been implicated as a mechanism by which steroid hormone homeostasis can be disrupted. The fungicide ketoconazole has been shown to lower serum testosterone levels and alter both gonadal synthesis and hepatic inactivation of testosterone. The present study examined whether the effects of ketoconazole on the hepatic biotransformation of testosterone contribute to its lowering of serum testosterone levels. Results also were used to validate further the use of the androgen-regulated hepatic testosterone 6alpha/15alpha-hydroxylase ratio as an indicator of androgen status. Male CD-1 mice were fed from 0 to 160 mg/kg ketoconazole in honey. Four h after the initial treatment, serum testosterone levels, gonadal testosterone secretion, and hepatic testosterone hydroxylase activity decreased, and the hepatic testosterone 6alpha/15alpha-hydroxylase ratio increased in a dose-dependent manner. Immunoblot analysis indicated that the transient decline in hepatic biotransformation was not due to reduced P450 protein levels. Rather, hepatic testosterone biotransformation activities were found to be differentially susceptible to direct inhibition by ketoconazole. Differential inhibition was also responsible for the increase seen in the 6alpha/15alpha-hydroxylase ratio. The changes in serum testosterone levels could be explained by decreased gonadal synthesis of testosterone and were not impacted by decreased hepatic biotransformation of testosterone. These results demonstrate that changes in the hepatic hydroxylation of testosterone by ketoconazole, and perhaps other chemicals, have little or no influence serum testosterone levels.

Use of this site is subject to the following terms of use